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We present a semantics-driven approach for stroke-based painterly rendering, based on recent image parsing techniques [Tu et al. 2005; Tu and Zhu 2006] in
computer vision. Image parsing integrates segmentation for regions, sketching for curves, and recognition for object categories. In an interactive manner, we
decompose an input image into a hierarchy of its constituent components in a parse tree representation with occlusion relations among the nodes in the tree.
To paint the image, we build a brush dictionary containing a large set (760) of brush examples of four shape/appearance categories, which are collected from
professional artists, then we select appropriate brushes from the dictionary and place them on the canvas guided by the image semantics included in the parse
tree, with each image component and layer painted in various styles. During this process, the scene and object categories also determine the color blending
and shading strategies for inhomogeneous synthesis of image details. Compared with previous methods, this approach benefits from richer meaningful image
semantic information, which leads to better simulation of painting techniques of artists using the high-quality brush dictionary. We have tested our approach
on a large number (hundreds) of images and it produced satisfactory painterly effects.
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1. INTRODUCTION

In recent years, NonPhotorealistic Rendering (NPR) [Gooch and
Gooch 2001; Strothotte and Schlechtweg 2002] and its rele-
vant areas have been attracting growing interest. As one of the
major topics of NPR research, painterly rendering, especially
Stroke-Based Rendering (SBR) [Hertzmann 2003] techniques have
achieved remarkable success. In general, SBR tries to synthe-
size nonphotorealistic images by placing and blending strokes
of certain visual styles such as stipples or painterly brushes.
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Towards the solutions of SBR, we are faced with two main
tasks:

(1) the modeling and manipulation of brushes, including both
shape and appearance factors;

(2) the selection and placement of brush strokes for the result im-
age.

For the first task, previously proposed models can be roughly
categorized into two main streams, namely, the physically-based/
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motivated models and the image-example-based models. The for-
mer stream is supposed to simulate the physical processes involved
in stroke drawing or painting, including the models of stroke el-
ements, media, etc. Among this stream, representative works in-
clude the hairy brushes model proposed by Strassmann [1986] and
a graphite pencil and paper model for rendering 3D polygonal ge-
ometries studied in Sousa and Buchanan [1999]. Curtis et al. [1997]
simulated various artistic effects of watercolor based on shallow-
water fluid dynamics. Chu and Tai [2005] developed a real-time
system for simulating ink dispersion in absorbent paper for art
creation purposes. At the same time, in order to avoid the great
computational and manipulative complexity of physically-based
methods, image-example-based models are adopted in a few SBR
solutions [Litwinowicz 1997; Hertzmann 1998], which usually do
not have explicit brush categories or design principles to account
for the various types of brush strokes used by artists.

Plenty of work has also been carried out for the second task. A
system for 3D NPR was developed in Teece [1998] where users
can place strokes interactively on the surfaces of 3D object mod-
els. Once the strokes are attached to a geometric model, they can
be subsequently replayed from various viewpoints, thus becoming
animations in painting styles. Besides, efforts to automatic stroke
placement are devoted in two main directions [Hertzmann 2003],
namely, the greedy methods and the optimization methods. The
greedy algorithms try to place the strokes to match specific targets
in every single step [Litwinowicz 1997; Hertzmann 1998], while
the optimization algorithms iteratively place and adjust strokes to
minimize or maximize certain objective energy functions [Turk and
Banks 1996].

Despite the acknowledged success, the current SBR methods,
and NPR in general, typically lack semantic descriptions of the
scenes and objects to be rendered, while semantics actually play
a central role in most drawing and painting tasks as commonly de-
picted by artists and perceived by audiences [Funch 1997]. With-
out image semantics, these rendering algorithms capturing only
low-level image characteristics, such as colors and textures, are
doomed to failure in well simulating the usually greatly flexible
and object-oriented techniques of painting. To address this prob-
lem, we present a semantics-driven approach for SBR, based on re-
cent image parsing technical advances in computer vision [Tu et al.
2005; Tu and Zhu 2006]. Figure 1 shows the system flowchart of
our approach with an example input image and its corresponding
final rendering result.

In the rendering flowchart, the input image first goes through a
hierarchical image parsing phase. As Figure 2(a) illustrates, image
parsing decomposes an input image into a coarse-to-fine hierarchy
of its constituent components in a parse tree representation, and
the nodes in the parse tree correspond to a wide variety of visual
patterns in the image, including:

(1) generic texture regions for sky, water, grass, land, etc.;

(2) curves for line or threadlike structures, such as tree twigs, rail-
ings, etc.;

(3) objects for hair, skin, face, clothes, etc.

We use 18 common object categories in this article.
The nodes in the parse tree are organized with partially ordered

occlusion relations which yield a layered representation as shown
in Figure 2(b). In our system, the parse tree is extracted in an inter-
active manner.

Corresponding to their semantics, the diverse visual patterns in
the parse tree ought to be painted with different types of brushes, for
example, human faces should commonly be painted more carefully

using relatively smaller brushes compared with intricate twigs and
leaves (see Figure 1). For this purpose, we build a brush dictionary
containing a large set (760) of brush examples with varying shapes
and texture appearances, which are collected from professional
artists. These brushes are aimed at reflecting the material proper-
ties and feelings in several perceptual dimensions or attributes, for
example, dry versus wet, hard versus soft, and long versus short, as
well as four shape and appearance categories (point, curve, block,
and texture). These attributes of the brushes are further augmented
by four additional attributes (color, opacity map, height map, and
backbone geometry), and they are mapped, probabilistically, to the
attributes of the visual patterns in the parse tree. Thus the selection
of the brushes from the dictionary is guided by the semantics in-
cluded in the parse tree, with each component and layer painted in
various styles.

For each image component, we run the primal sketch algo-
rithm [Guo et al. 2007] to compute a vectorized sketch graph as
cues of pixel orientations within the image, and then generate an
orientation field through anisotropic diffusion [Perona 1998; Chen
and Zhu 2006], as shown in Figure 3. After that, the placement of
brush strokes is guided by the shapes of the image components and
the orientation field with a greedy algorithm. The scene and object
categories also determine the color blending and shading strategies,
thus achieve inhomogeneous synthesis for rich image details. In ad-
dition, an optional color enhancement process also based on image
semantics is provided for more appealing rendering effects.

The main contributions of this article are twofold. First, we intro-
duce rich image semantics to drive painterly rendering algorithms,
which leads to better simulation of painting techniques of artists.
Second, we build a high-quality image-example-based brush dic-
tionary, which enables vivid synthesis of nice painterly effects. The
method described in the article has achieved satisfactory results
over hundreds of testing images. Figure 1 includes one of our rep-
resentative painterly rendering results with diverse painting tech-
niques applied throughout the image. In addition, Figures 8 to 11
show more SBR results generated using our approach.

The rest article of this is planned as follows. Section 2 introduces
the formulation and computation of the image parsing process. Sec-
tion 3 explains our brush dictionary as well as the stroke placement
and rendering algorithms. Section 4 displays some examples of our
painterly rendering results, and Section 5 includes a brief discus-
sion of possible future improvements.

2. INTERACTIVE IMAGE PARSING

Image parsing refers to the task of decomposing an image into its
constituent visual patterns in a coarse-to-fine parse tree representa-
tion [Tu et al. 2005; Tu and Zhu 2006]. It integrates image segmen-
tation for generic regions, sketching for curves and curve groups,
and recognition for object categories. We develop a software inter-
face to obtain interactive instructions from users for reliable parsing
results.

2.1 Hierarchical Decomposition and Recognition

Figure 2(a) shows an example of hierarchical image parsing. The
whole scene is first divided into two parts: two people in the fore-
ground and the outdoor environment in the background. In the
second level, the two parts are further subdivided into face/skin,
clothes, trees, road/building, etc. Continuing with lower levels,
these patterns are decomposed recursively until a certain resolution
limit is reached. That is, certain leaf nodes in the parse become un-
recognizable without the surrounding context, or insignificant for
specific tasks.
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Parse Tree
(Figure 2(a))

Sketch Graph
(Figure 3(a))

Orienta�on Field
(Figure 3(b))

Brush Dic�onary
(Sec�on 3.1)

Image Parsing
(Sec�on 2.1)

Primal Sketch
(Sec�on 2.2)Input Image

Rendering Result

Orienta�on Diffusion
(Sec�on 2.2)

Stroke Placement
(Sec�on 3.2)

Color Enhancement
(Op�onal, Sec�on 3.3)

Brush Selec�on
(Sec�on 3.2)

Fig. 1. The flowchart of our painterly rendering system based on image parsing. With the extracted semantic information, the input image is painterly rendered
with its constituent components depicted in various styles.

Given an input image, we denote by W the parse tree for the
semantic description of the scene, and

R = {Rk : i = 1, 2, · · · , K } ⊂ W (1)

is the set of the K leaf nodes of W , representing the generic regions,
curves, and objects in the image. Each leaf node Rk is a 3-tuple

Rk = 〈�k, �k,Ak〉, (2)

where �k is the image domain (a set of pixels) covered by Rk , and
�k and Ak are its label (for object category) and appearance model,
respectively. Let � be the domain of the whole image lattice, then

� = �1 ∪ �2 ∪ · · · ∪ �K (3)

in which we do not demand �i ∩ � j = ∅ for all i �= j since two
nodes are allowed to overlap with each other.
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scene

people environment

face/skin
clothes

hairs

road/building
trees

sky

trunks/earth
(texture)

leaves
(texture)

curves
sketches

trunk
(curves)

(a)

people

sky

trees

road/building

(b)

Fig. 2. An illustration of image parsing. (a) The parse tree representation of an image. (b) The occlusion relation between nodes in the parse tree yields a
partial order and thus a layered representation.

(a) sketch graph (b) orientation field

Fig. 3. The layered sketch graph and its corresponding orientation field generated following the example in Figures 1 and 2. In (a), red, blue, and black
lines stand for the region boundaries, major curves, and other sketches, respectively. For clarity, the orientation field visualized in (b) is computed without the
Gaussian prior energy, which may submerge other factors in some areas (see Section 2.2).

The leaf nodes R can be obtained with a segmentation and
recognition (object classification) process, and assigned to different
depths (distances from the camera) to form a layered representation
of the scene structure of the image. We use a three-stage, interactive
process to acquire the information.

(1) The image is segmented into a few regions by the graph-
cut algorithm [Boykov and Jolly 2001] in a real-time inter-
active manner using foreground and background scribbles [Li
et al. 2004] on superpixels generated by mean-shift clustering
[Comaniciu and Meer 2002].
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(2) The regions are classified by a bag-of-words classifier [Li et al.
2005] with 18 object categories which are common in natural
images.

face/skin hair cloth sky/cloud
water surface spindrift mountain road/building

rock earth wood/plastic metal
flower/fruit grass leaf trunk/twig
background other

Features including SIFT [Lowe 1999], colors, and region ge-
ometries are used for the classification. In case of imperfect
recognitions which usually happen, users can correct the cate-
gory labels through the software interface by selecting from a
list of all the labels.

(3) The regions are assigned to layers of different depths, by max-
imizing the probability of a partially ordered sequence

S : R(1) 	 R(2) 	 · · · 	 R(K ) (4)

for region R(1) in the same or closer layers of R(2) and so on,
which is a permutation of

R1 	 R2 	 · · · 	 RK . (5)

By assuming all events R(k) 	 R(k+1), k = 1, 2, · · · , K − 1 are
independent, we have an empirical solution

S∗ = arg max
S

p(R(1) 	 R(2), R(2) 	 R(3), · · · , R(K−1) 	 R(K ))

= arg max
S

K−1∏
k=1

p(R(k) 	 R(k+1)) (6)

in which p(R(k) 	 R(k+1)) can be approximated with

p(R(k) 	 R(k+1)) ≈ f̃ (Ri 	 R j |�i = �(k), � j = �(k+1)), (7)

where f̃ returns the frequencies of occlusions between dif-
ferent object categories according to previously annotated ob-
servations in the LHI image database [Yao et al. 2007]. Note
that the independence assumption should fail if p(S|R(1) 	
R(2), R(2) 	 R(3), · · · , R(K−1) 	 R(K )) = 1, but we still ex-
pect S∗ to approximate the mode of p(S). Once S∗ is obtained,
users can also correct it by swapping pairs of regions through
the software interface, and can further compress the sequence
to limit the total number of layers, by combining the pairs of
R(k) and R(k+1) with relatively low p(R(k) 	 R(k+1)), as shown
in Figure 2(b).

2.2 Primal Sketch and Orientation Field

For each leaf node (except curves) in the parse tree, we run the pri-
mal sketch algorithm [Guo et al. 2007] to generate a sketch graph
and the orientation diffusion algorithm [Perona 1998; Chen and
Zhu 2006] for an orientation field.

The concept of primal sketch dates back to David Marr, who
conjectured the idea as a symbolic or token representation in terms
of image primitives, to summarize the early visual processing [Marr
1982]. A mathematical model of primal sketch was later presented
in Guo et al. [2007] which integrates structures and textures.

Given the domain �k of a leaf node Rk , the primal sketch model
further subdivides it into two parts: a sketchable part �sk

k for salient
structures (perceivable line segments) and a nonsketchable part
�nsk

k for stochastic textures without distinguishable structures, and

�k = �sk
k ∪ �nsk

k , �sk
k ∩ �nsk

k = ∅. (8)

The primitives in the sketchable part �sk
k provide major pixel orien-

tation information of the image, as shown in Figure 3(a). Using the
orientation data of sketchable pixels, we compute an orientation
field on �k using a diffusion routine which minimizes an energy
function derived within the Markov Random Field (MRF) frame-
work with pair cliques in a 3-layer neighborhood system.

An orientation field Θk of Rk , defined on �k , is the set of orien-
tations at every pixel s ∈ �k

Θk = {θ (s) : θ (s) ∈ [0, π ), s ∈ �k} (9)

in which each orientation θ (s) depends on its neighbors in three
layers:

(1) the same pixel s in the initial orientation field

Θsk
k = {θ (s) : θ (s) ∈ [0, π ), s ∈ �sk

k } (10)

covering all sketchable pixels of Rk ;
(2) the adjacent pixels ∂s of s on the 4-neighborhood stencil of

the orientation field Θk ;
(3) the same pixel s in the prior orientation field

Θpri
k = {θ (s) : θ (s) ∼ G(μk, σ

2
k , ak, bk), s ∈ �k} (11)

of Rk , in which G(μk, σ
2
k , ak, bk) is a truncated Gaussian dis-

tribution whose parameters depend on the properties of Rk .

Corresponding to the constraints of the three layers, the energy
function of the orientation field is defined as

E(Θk) = Esk(Θk) + αEsm(Θk) + βEpri(Θk) (12)

in which Esk(Θk), Esm(Θk), and Epri(Θk) are terms for the afore-
mentioned three layers, respectively, and α and β are weight
parameters assigned by the user. The first term

Esk(Θk) =
∑

s∈�sk
k

d(Θk(s),Θsk
k (s))ρsk

k (s) (13)

measures the similarity of Θk and Θsk
k at sketchable pixels, in

which the weight map

ρsk
k = {ρ(s) : ρ(s) = ∇⊥Θsk

k
I�sk

k
, s ∈ �sk

k } (14)

is a gradient strength field across the sketches, and d is a distance
function between two orientations defined on [0, π ) × [0, π ) as

d(θ, φ) = sin |θ − φ|. (15)

The smoothing term

Esm(Θk) =
∑
〈s,t〉

d(Θk(s),Θk(t)) (16)

measures the similarity between adjacent pixels s and t in Θk , and
the prior term is similarly defined homogeneously as

Epri(Θk) =
∑
s∈�k

d(Θk(s),Θpri
k (s)) (17)

to apply additional preferences to pixel orientations in Θk , which is
especially useful for regions with weak or even no data constraint
of Θsk

k such as the sky.
An orientation diffusion algorithm [Perona 1998; Chen and Zhu

2006] can be applied to minimize E(Θk) for the objective Θk . With
Θk, k = 1, 2, . . . , K , the orientation field Θ of the whole image is
eventually computed with

Θ = Θ1 ∪ Θ2 ∪ · · · ∪ ΘK . (18)

ACM Transactions on Graphics, Vol. 29, No. 1, Article 2, Publication date: December 2009.



2:6 • K. Zeng et al.

Figure 3(b) visualizes, by Linear Integral Convolution (LIC), an
orientation field generated with the sketch graph in Figure 3(a),
where the Gaussian prior energy is disabled for clarity. With our
layered representation and algorithms, the generated orientation
field is determined by only local sketches and boundaries within
each region, thus it prevents abnormal flows along boundaries be-
tween adjacent regions caused by occlusion, for example, the back-
ground flows around the contour of the two people in the example
shown in Figure 3(b).

3. PAINTERLY RENDERING DRIVEN BY THE
PARSE TREE

3.1 The Brush Dictionary

In the literature, physically-based/motivated brush models have a
few common problems.

(1) It is difficult to design parametric physical models to achieve
the photoreality that can satisfy human visual perception.

(2) Most physically-based simulations involve dense computa-
tions which prevent them from being applied in interactive
systems.

On the contrary, image-based models are proved applicable for
applications as complex as decomposing and animating a Chinese-
styled painting [Xu et al. 2006].

We have developed an example-based model for brushes with
a brush dictionary collected from professional artists. Some ex-
amples from the dictionary are shown in Figure 4. Brushes in the
dictionary are of four different shape/appearance categories: point
(200 examples), curve (240 examples), block (120 examples), and
texture (200 examples). Approximate opacity and height maps are
manually produced for the brushes using image processing soft-
ware according to pixels’ gray levels. Backbone polylines are also
manually labeled for all brushes. With variations in detailed pa-
rameters, these brushes reflect the material properties and feelings
in several perceptual dimensions or attributes, for example, dry ver-
sus wet, hard versus soft, long versus short, etc.

Original colors of the brushes in the dictionary are close to green.
During the rendering process, they will be dynamically transferred
to expected colors, using a color transfer algorithm similar to Rein-
hard et al. [2001]. The color transfer operation takes place in the
HSV color space to keep the psychological color contrast during the
transfer. Since the pixels within a brush image are nearly monotone
in contrast to the colorfulness of common natural images, this al-
gorithm capturing only means and variances of colors works quite
well, as shown in Figure 5. For each brush in the dictionary, we
have its opacity and height maps in addition to the shape and color
information, allowing painting with different blending methods ac-
cording to properties of target regions, as well as photorealistic
shading effects.

3.2 Stroke Placement and Rendering

We adopt a layered stroke placement strategy. During the rendering
process, we start from the most distant layer, and move backwards
to the foreground layer. Then the whole stroke placement sequence
is determined by the sequences for the layers. For each layer, we
use two types of strokes for the processing of curves and regions,
respectively. Usually, strokes for curves are placed upon (or after, in
time) strokes for regions for an occlusion effect. For example, long
strokes for twigs are placed upon texture strokes for the background
sky.

Fig. 4. Some examples from the brush dictionary. The original colors are
close to green, and can be dynamically transferred to required colors dur-
ing synthesis. In additional to the shape and color information, opacity and
height maps of the brushes are also available for color blending and shading.

The strokes for curves are placed along the long and smooth
curves we acquired during the pursuit of primal sketch (see Fig-
ure 3(a)), with morphing operations to bend the brush backbones
as well as the attached color pixels according to curve shapes. As
for the strokes for regions, we use a simple greedy algorithm to de-
termine the sequence of placement. For each region in a specific
layer, we follow the following steps:

(1) Construct a list q to record pixel positions. Randomly select
an unprocessed pixel s in this region, and add s to q.

(2) According to the orientation Θ(s) of s, find pixel t in its 8-
neighborhood using

t = s + (sign[cos Θ(s)], sign[sin Θ(s)]). (19)

(3) If cos(Θ(s) −Θ(t)) > 1/
√

2, add t to q, then let s = t and go
to step 2, otherwise go to step 4.

(4) Now q contains a list of pixels, which trace the orientation
flow to form a streamline. According to the shape and length
of the streamline, as well as the object category of the current
region, we randomly select a brush B from a set of candi-
dates from the dictionary, then calculate the geometric trans-
formation T to adapt the backbone of B to the streamline. Add
stroke 〈B, T 〉 to the stroke sequence for the current region, and
mark all pixels covered by this stroke as processed.

(5) Stop if all the pixels in the current region are processed, oth-
erwise go to step 1.
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(a) (b) (c) (d) (e)

Fig. 5. An example of brush color transfer in the HSV color space. (a) is the original brush image. (b) through (e) are the transferred color brush images.

In order to complete these steps to fulfill the stroke placement task,
a few details need to be specified.

(1) In real applications, an orientation field with lower resolution
than the original image is often preferred, and the maximum
size of list q is limited according to the object category and/or
user preferences. The limit depends on the resolution of the
discrete orientation field, which corresponds to the size of the
result image.

(2) To construct the set of candidate brushes from the dictionary,
we have hard-coded the mapping relations between brushes
and object categories of regions. Specifically, we divide the
four brush categories into more small groups according to the
length/width ratios of the brushes, and define probabilities for
selection over these groups for each object category. The can-
didate set is obtained by sampling from the corresponding dis-
tribution according to the object category of the region. For ex-
ample, for an image region labeled as “face/skin”, we assign
higher probabilities for block brushes with relatively smaller
length/width ratios in the dictionary, than the probabilities for
very long block brushes and dot, curve, and texture brushes.

(3) To select from the candidate set of brushes, we use the shape
parameters obtained from the traced streamline. We select the
brush that requires the minimum morphing and scaling to fit
the streamline. To achieve this, we adopt a common basis
representation for both the backbones of the brushes and the
streamline. We first normalize the brushes in the dictionary by
placing the start and end points of their backbones at (xs, ys) =
(0, 0) and (xe, ye) = (1, 0), respectively, using affine transfor-
mation. After that, we parameterize the backbones as poly-
nomial curves up to the fourth order. For each traced stream-
line, we fit a similar polynomial curve also with normalization.
Then the difference between the streamline and the backbones
can be described by the difference between the coefficients of
the polynomials, where we usually weigh more for low-order
coefficients to emphasize the global shape of the brush stroke.
Finally, the brush is selected by minimizing this difference.

After the stroke sequence is determined, the renderer synthesizes
the painting image using the high-resolution images from the brush
dictionary. Objective colors for color transfer are obtained by av-
eraging over a few random samples from corresponding areas in
the source image. Although this method causes loss of information
in gradually changing colors, it proves to be no serious problem,
especially since the existence of color blocks is one of the observ-
able features of paintings. Depending on the object category of the
current region, colors from different brush strokes may be blended
using designed strategies, for example, with opacity between zero
and one for “face/skin” and “sky/cloud,” or without it (i.e., one
brush completely covers another) for “flower/fruit” and “grass.”
Meanwhile, a height map for the region is constructed according
to brush properties, for example, the height map accumulates with
dry brushes but not with wet brushes. In the end, the photorealistic

renderer performs shading with local illumination for the painting
image according to the height map.

3.3 Color Enhancement Based
on Statistical Analysis

Beside the brush selection and stroke placement algorithms, the
system also provides an optional process to transfer and enhance
the color of the whole image to match the color statistics of artistic
paintings to achieve more appealing rendering effects.

Comparing the colors of natural images and oil-painting images,
we found obvious statistical differences between some of their
marginal distributions. For example, by defining a psychological
color temperature on saturation S and hue H as

ColorTemperature(S, H ) = S · sin H
(S · cos H )2 + 1

(20)

with orange as the warm pole (H = π/2) and blue as the cool pole
(H = −π/2) according to human perception, it is observed that
oil-paintings by artists tend to appear warmer than natural images,
as shown in Figure 6. Also, a study on color statistics by Cohen-Or
et al. [2006] shows that the color scheme of an image is harmony
when its hue follows a V- or L-shape distribution. For a typical
warm painting, it does follow the V-shape harmony distribution, as
shown in Figure 6(b). In addition, it is observed that color statistics
of different images relate directly to the scene category informa-
tion, for example, portrait, landscape, etc.

We adopt a region-level method to transfer the color of natural
images into the color manifolds of painting images. We call this a
color enhancement operation based on the image-level color trans-
fer algorithm [Reinhard et al. 2001]. By forcing the operation on
the region level, we expect better results than the image-level color
transfer because the Gaussian assumption is better satisfied. We use
a nonparametric strategy to choose color scheme from preanalyzed
painting images. We have built a color scheme dictionary including
40 typical schemes collected from painting masterpieces, whose
color statistics are computed on the levels of both regions and im-
ages. When it comes to select the target scheme from the dictionary,
we choose the image with the most similar scene by minimizing an
approximate distance between two parse trees

δ(W1, W2) = −
∑

Ri ∈W1

⎛
⎝ ∏

R j ∈W2

1ci �=c j

⎞
⎠ log f̃ (ci )

−
∑

Ri ∈W2

⎛
⎝ ∏

R j ∈W1

1ci �=c j

⎞
⎠ log f̃ (ci )

(21)

in which f̃ (ci ) refers to the empirical prior probability or frequency
of object categories in all observations. This is based on the as-
sumption that rare objects tend to be representative scene descrip-
tors.
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(a) (b) (c)

Cool Warm

Fig. 6. A comparison of distributions of hue and color temperature between natural images and oil-painting images: (a) hue distribution of selected typical
natural image samples, (b) hue distribution of selected typical oil-painting image samples, (c) distributions of color temperature (blue curve for natural images
and red for oil-painting images). Compared with natural images, oil-painting images mostly have red-orange-yellow colors, and are consequently usually
warmer than the former.

(a) (b) (c)

Fig. 7. An illustration of color enhancement. (a) is the source image. (b) is the enhanced image generated according to the scene information. (c) is the final
painterly rendering result.

Having the image with the most similar scene and its color statis-
tics, we do color transfer operations for each region according to
its corresponding region in the target color scheme. Regions whose
object categories are not included in the target scheme are trans-
fered towards the whole image statistics of the scheme. Figure 7
illustrates an example of our color enhancement results.

4. EXPERIMENTAL RESULTS

We have done experiments on hundreds of images of various types
of scenes or portraits. Some results are shown in Figures 1 and 8
to 11. Figure 1 includes the final painterly rendering result corre-
sponding to the image parsing example in Figures 2 and 3. Figure 8
is an image of a common landscape scene, with the sky, water sur-
face, rocks, and trees. With our hierarchical parsing and rendering
solution, different brushes, strokes, and blending effects are avail-
able for different objects. Figure 9 illustrates the use of brushes of
multiple sizes by rendering potted flowers in front of an abstract
background. Figure 10 displays the rendering result with color en-
hancement, which is especially useful for daily photos with imper-
fect colors. Figure 11 shows another landscape painterly rendering.

5. CONCLUSIONS AND FUTURE WORK

The framework proposed previously for painterly rendering based
on image parsing can work well on various types of natural images,
with satisfactory global and local effects. Compared with previous
methods, the improvements in painterly effects are attributed to the

fact that our framework takes into consideration the rich semantic
information of images stored in hierarchical parse tree structures,
and adopts a layered representation for rendering.

By substituting the brush dictionary with proper graphical ele-
ments and adjusting detailed rendering strategies, it is possible to
extend this framework for NPR of multiple types and styles, for
example, mosaics, stipples, and pencil drawings, etc. In order to
achieve such migrations and extensions, we need to eliminate some
limits existing in our current framework:

(1) Instead of just tuples of shapes, colors, opacities, heights, etc.,
a more expressive brush dictionary should be constructed to
model some special effects used by artists, and details of the
current features can also be richer (e.g., brushes with mixed
complementary colors).

(2) More veritable and robust association between brush param-
eters and object properties should be modeled, with more
flexible rendering procedures, for better depicting subtle sub-
stances such as human faces and fine fabrics (not necessarily
using small and thin brushes according to professional artists).

(3) The stroke placement driven by the primal sketch and orienta-
tion field needs to be improved for zigzag or semitransparent
boundaries, especially for impressionism paintings.

(4) More advanced vision algorithms should be developed for in-
teractive image parsing with a more friendly software interface
providing a better user experience.
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(a) (b)

Fig. 8. An example painterly rendering result. (a) is an image of a common landscape scene, including the sky, water surface, rocks, and trees, and (b) is its
corresponding painting image.

(a) (b)

Fig. 9. An example painterly rendering result. (a) is a typical scene of still life: potted flowers in front of an abstract background, and (b) is its corresponding
painting image.
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(a) (b)

Fig. 10. An example painterly rendering result. (a) is an artistic photo of a young lady’s upper body, which is dark in its original color, and (b) is its
corresponding painting image with color enhancement.

(a) (b)

Fig. 11. An example painterly rendering result. (a) is a computer-generated photorealistic landscape scene, and (b) is its corresponding painting image.
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The project Web page with the most updated results: http://www.
stat.ucla.edu/∼m/zhao/research/parse2paint/.
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